Package 'cardx'

Title: Extra Analysis Results Data Utilities
Description: Create extra Analysis Results Data (ARD) summary objects. The package supplements the simple ARD functions from the 'cards' package, exporting functions to put statistical results in the ARD format. These objects are used and re-used to construct summary tables, visualizations, and written reports.
Authors: Daniel D. Sjoberg [aut, cre] , Abinaya Yogasekaram [aut], Emily de la Rua [aut], F. Hoffmann-La Roche AG [cph, fnd]
Maintainer: Daniel D. Sjoberg <[email protected]>
License: Apache License 2.0
Version: 0.2.2.9012
Built: 2025-01-15 22:21:50 UTC
Source: https://github.com/insightsengineering/cardx

Help Index


ARD Wald Test

Description

Function takes a regression model object and calculates Wald statistical test using aod::wald.test().

Usage

ard_aod_wald_test(
  x,
  tidy_fun = broom.helpers::tidy_with_broom_or_parameters,
  ...
)

Arguments

x

regression model object

tidy_fun

(function)
a tidier. Default is broom.helpers::tidy_with_broom_or_parameters

...

arguments passed to aod::wald.test(...)

Value

data frame

Examples

lm(AGE ~ ARM, data = cards::ADSL) |>
  ard_aod_wald_test()

ARD Attributes

Description

Add variable attributes to an ARD data frame.

  • The label attribute will be added for all columns, and when no label is specified and no label has been set for a column using the ⁠label=⁠ argument, the column name will be placed in the label statistic.

  • The class attribute will also be returned for all columns.

  • Any other attribute returned by attributes() will also be added, e.g. factor levels.

Usage

## S3 method for class 'survey.design'
ard_attributes(data, variables = everything(), label = NULL, ...)

Arguments

data

(survey.design)
a design object often created with survey::svydesign().

variables

(tidy-select)
variables to include

label

(named list)
named list of variable labels, e.g. list(cyl = "No. Cylinders"). Default is NULL

...

These dots are for future extensions and must be empty.

Value

an ARD data frame of class 'card'

Examples

data(api, package = "survey")
dclus1 <- survey::svydesign(id = ~dnum, weights = ~pw, data = apiclus1, fpc = ~fpc)

ard_attributes(
  data = dclus1,
  variables = c(sname, dname),
  label = list(sname = "School Name", dname = "District Name")
)

ARD ANOVA from car Package

Description

Function takes a regression model object and calculated ANOVA using car::Anova().

Usage

ard_car_anova(x, ...)

Arguments

x

regression model object

...

arguments passed to car::Anova(...)

Value

data frame

Examples

lm(AGE ~ ARM, data = cards::ADSL) |>
  ard_car_anova()

glm(vs ~ factor(cyl) + factor(am), data = mtcars, family = binomial) |>
  ard_car_anova(test.statistic = "Wald")

Regression VIF ARD

Description

Function takes a regression model object and returns the variance inflation factor (VIF) using car::vif() and converts it to a ARD structure

Usage

ard_car_vif(x, ...)

Arguments

x

regression model object See car::vif() for details

...

arguments passed to car::vif(...)

Value

data frame

Examples

lm(AGE ~ ARM + SEX, data = cards::ADSL) |>
  ard_car_vif()

ARD Proportion Confidence Intervals

Description

[Experimental]
Calculate confidence intervals for proportions.

Usage

ard_categorical_ci(data, ...)

## S3 method for class 'data.frame'
ard_categorical_ci(
  data,
  variables,
  by = dplyr::group_vars(data),
  method = c("waldcc", "wald", "clopper-pearson", "wilson", "wilsoncc", "strat_wilson",
    "strat_wilsoncc", "agresti-coull", "jeffreys"),
  denominator = c("column", "row", "cell"),
  conf.level = 0.95,
  value = list(where(is_binary) ~ 1L, where(is.logical) ~ TRUE),
  strata = NULL,
  weights = NULL,
  max.iterations = 10,
  ...
)

Arguments

data

(data.frame)
a data frame

...

Arguments passed to methods.

variables

(tidy-select)
columns to include in summaries. Columns must be class ⁠<logical>⁠ or ⁠<numeric>⁠ values coded as c(0, 1).

by

(tidy-select)
columns to stratify calculations by.

method

(string)
string indicating the type of confidence interval to calculate. Must be one of . See ?proportion_ci for details.

denominator

(string)
Must be one of 'column' (default), 'row', and 'cell', which specifies the direction of the calculation/denominator. Argument is similar to cards::ard_categorical(denominator).

conf.level

(numeric)
a scalar in ⁠(0, 1)⁠ indicating the confidence level. Default is 0.95

value

(formula-list-selector)
function will calculate the CIs for all levels of the variables specified. Use this argument to instead request only a single level by summarized. Default is list(where(is_binary) ~ 1L, where(is.logical) ~ TRUE), where columns coded as 0/1 and TRUE/FALSE will summarize the 1 and TRUE levels.

strata, weights, max.iterations

arguments passed to proportion_ci_strat_wilson(), when method='strat_wilson'

Value

an ARD data frame

Examples

# compute CI for binary variables
ard_categorical_ci(mtcars, variables = c(vs, am), method = "wilson")

# compute CIs for each level of a categorical variable
ard_categorical_ci(mtcars, variables = cyl, method = "jeffreys")

ARD survey categorical CIs

Description

Confidence intervals for categorical variables calculated via survey::svyciprop().

Usage

## S3 method for class 'survey.design'
ard_categorical_ci(
  data,
  variables,
  by = NULL,
  method = c("logit", "likelihood", "asin", "beta", "mean", "xlogit"),
  conf.level = 0.95,
  value = list(where(is_binary) ~ 1L, where(is.logical) ~ TRUE),
  df = survey::degf(data),
  ...
)

Arguments

data

(survey.design)
a design object often created with survey::svydesign().

variables

(tidy-select)
columns to include in summaries.

by

(tidy-select)
results are calculated for all combinations of the columns specified, including unobserved combinations and unobserved factor levels.

method

(string)
Method passed to survey::svyciprop(method)

conf.level

(numeric)
a scalar in ⁠(0, 1)⁠ indicating the confidence level. Default is 0.95

value

(formula-list-selector)
function will calculate the CIs for all levels of the variables specified. Use this argument to instead request only a single level by summarized. Default is list(where(is_binary) ~ 1L, where(is.logical) ~ TRUE), where columns coded as 0/1 and TRUE/FALSE will summarize the 1 and TRUE levels.

df

(numeric)
denominator degrees of freedom, passed to survey::svyciprop(df). Default is survey::degf(data).

...

arguments passed to survey::svyciprop()

Value

ARD data frame

Examples

data(api, package = "survey")
dclus1 <- survey::svydesign(id = ~dnum, weights = ~pw, data = apiclus1, fpc = ~fpc)

ard_categorical_ci(dclus1, variables = sch.wide)
ard_categorical_ci(dclus1, variables = sch.wide, value = sch.wide ~ "Yes", method = "xlogit")

ARD to Calculate Categorical Occurrence Rates by Maximum Level Per Unique ID

Description

Function calculates categorical variable level occurrences rates by maximum level per unique ID. Each variable in variables is evaluated independently and then results for all variables are stacked. Only the highest-ordered level will be counted for each unique ID. Unordered, non-numeric variables will be converted to factor and the default level order used for ordering.

Usage

ard_categorical_max(
  data,
  variables,
  id,
  by = dplyr::group_vars(data),
  statistic = everything() ~ c("n", "p", "N"),
  denominator = NULL,
  fmt_fn = NULL,
  stat_label = everything() ~ cards::default_stat_labels(),
  quiet = FALSE,
  ...
)

Arguments

data

(data.frame)
a data frame

variables

(tidy-select)
The categorical variables for which occurrence rates per unique ID (by maximum level) will be calculated.

id

(tidy-select)
Argument used to subset data to identify rows in data to calculate categorical variable level occurrence rates.

by

(tidy-select)
columns to tabulate by in the series of ARD function calls. Any rows with NA or NaN values are removed from all calculations.

statistic

(formula-list-selector)
a named list, a list of formulas, or a single formula where the list element one or more of c("n", "N", "p") (or the RHS of a formula).

denominator

(data.frame, integer)
An optional argument to change the denominator used for "N" and "p" statistic calculations. Defaults to NULL, in which case dplyr::distinct(data, dplyr::pick(all_of(c(id, by)))) is used for these calculations. See cards::ard_categorical() for more details on specifying denominators.

fmt_fn

(formula-list-selector)
a named list, a list of formulas, or a single formula where the list element is a named list of functions (or the RHS of a formula), e.g. ⁠list(mpg = list(mean = \(x) round(x, digits = 2) |> as.character()))⁠.

stat_label

(formula-list-selector)
a named list, a list of formulas, or a single formula where the list element is either a named list or a list of formulas defining the statistic labels, e.g. everything() ~ list(n = "n", p = "pct") or everything() ~ list(n ~ "n", p ~ "pct").

quiet

(scalar logical)
Logical indicating whether to suppress additional messaging. Default is FALSE.

...

Arguments passed to methods.

Value

an ARD data frame of class 'card'

Examples

# Occurrence Rates by Max Level (Highest Severity) --------------------------
ard_categorical_max(
  cards::ADAE,
  variables = c(AESER, AESEV),
  id = USUBJID,
  by = TRTA,
  denominator = cards::ADSL |> dplyr::rename(TRTA = ARM)
)

ARD Categorical Survey Statistics

Description

Compute tabulations on survey-weighted data.

The counts and proportion ("N", "n", "p") are calculated using survey::svytable(), and the standard errors and design effect ("p.std.error", "deff") are calculated using survey::svymean().

The unweighted statistics are calculated with cards::ard_categorical.data.frame().

Usage

## S3 method for class 'survey.design'
ard_categorical(
  data,
  variables,
  by = NULL,
  statistic = everything() ~ c("n", "N", "p", "p.std.error", "deff", "n_unweighted",
    "N_unweighted", "p_unweighted"),
  denominator = c("column", "row", "cell"),
  fmt_fn = NULL,
  stat_label = everything() ~ list(p = "%", p.std.error = "SE(%)", deff =
    "Design Effect", n_unweighted = "Unweighted n", N_unweighted = "Unweighted N",
    p_unweighted = "Unweighted %"),
  ...
)

Arguments

data

(survey.design)
a design object often created with survey::svydesign().

variables

(tidy-select)
columns to include in summaries.

by

(tidy-select)
results are calculated for all combinations of the column specified and the variables. A single column may be specified.

statistic

(formula-list-selector)
a named list, a list of formulas, or a single formula where the list element is a character vector of statistic names to include. See default value for options.

denominator

(string)
a string indicating the type proportions to calculate. Must be one of "column" (the default), "row", and "cell".

fmt_fn

(formula-list-selector)
a named list, a list of formulas, or a single formula where the list element is a named list of functions (or the RHS of a formula), e.g. ⁠list(mpg = list(mean = \(x) round(x, digits = 2) |> as.character()))⁠.

stat_label

(formula-list-selector)
a named list, a list of formulas, or a single formula where the list element is either a named list or a list of formulas defining the statistic labels, e.g. everything() ~ list(mean = "Mean", sd = "SD") or everything() ~ list(mean ~ "Mean", sd ~ "SD").

...

These dots are for future extensions and must be empty.

Value

an ARD data frame of class 'card'

Examples

svy_titanic <- survey::svydesign(~1, data = as.data.frame(Titanic), weights = ~Freq)

ard_categorical(svy_titanic, variables = c(Class, Age), by = Survived)

ARD continuous CIs

Description

One-sample confidence intervals for continuous variable means and medians.

Usage

ard_continuous_ci(data, ...)

## S3 method for class 'data.frame'
ard_continuous_ci(
  data,
  variables,
  by = dplyr::group_vars(data),
  conf.level = 0.95,
  method = c("t.test", "wilcox.test"),
  ...
)

Arguments

data

(data.frame)
a data frame. See below for details.

...

arguments passed to t.test() or wilcox.test()

variables

(tidy-select)
column names to be compared. Independent t-tests will be computed for each variable.

by

(tidy-select)
optional column name to compare by.

conf.level

(scalar numeric)
confidence level for confidence interval. Default is 0.95.

method

(string)
a string indicating the method to use for the confidence interval calculation. Must be one of "t.test" or "wilcox.test"

Value

ARD data frame

Examples

ard_continuous_ci(mtcars, variables = c(mpg, hp), method = "wilcox.test")
ard_continuous_ci(mtcars, variables = mpg, by = am, method = "t.test")

ARD survey continuous CIs

Description

One-sample confidence intervals for continuous variables' means and medians. Confidence limits are calculated with survey::svymean() and survey::svyquantile().

Usage

## S3 method for class 'survey.design'
ard_continuous_ci(
  data,
  variables,
  by = NULL,
  method = c("svymean", "svymedian.mean", "svymedian.beta", "svymedian.xlogit",
    "svymedian.asin", "svymedian.score"),
  conf.level = 0.95,
  df = survey::degf(data),
  ...
)

Arguments

data

(survey.design)
a design object often created with survey::svydesign().

variables

(tidy-select)
columns to include in summaries.

by

(tidy-select)
results are calculated for all combinations of the columns specified, including unobserved combinations and unobserved factor levels.

method

(string)
Method for confidence interval calculation. When "svymean", the calculation is computed via survey::svymean(). Otherwise, it is calculated viasurvey::svyquantile(interval.type=method)

conf.level

(scalar numeric)
confidence level for confidence interval. Default is 0.95.

df

(numeric)
denominator degrees of freedom, passed to survey::confint(df). Default is survey::degf(data).

...

arguments passed to survey::confint()

Value

ARD data frame

Examples

data(api, package = "survey")
dclus1 <- survey::svydesign(id = ~dnum, weights = ~pw, data = apiclus1, fpc = ~fpc)

ard_continuous_ci(dclus1, variables = api00)
ard_continuous_ci(dclus1, variables = api00, method = "svymedian.xlogit")

ARD Continuous Survey Statistics

Description

Returns an ARD of weighted statistics using the {survey} package.

Usage

## S3 method for class 'survey.design'
ard_continuous(
  data,
  variables,
  by = NULL,
  statistic = everything() ~ c("median", "p25", "p75"),
  fmt_fn = NULL,
  stat_label = NULL,
  ...
)

Arguments

data

(survey.design)
a design object often created with survey::svydesign().

variables

(tidy-select)
columns to include in summaries.

by

(tidy-select)
results are calculated for all combinations of the columns specified, including unobserved combinations and unobserved factor levels.

statistic

(formula-list-selector)
a named list, a list of formulas, or a single formula where the list element is a character vector of statistic names to include. See below for options.

fmt_fn

(formula-list-selector)
a named list, a list of formulas, or a single formula where the list element is a named list of functions (or the RHS of a formula), e.g. ⁠list(mpg = list(mean = \(x) round(x, digits = 2) |> as.character))⁠.

stat_label

(formula-list-selector)
a named list, a list of formulas, or a single formula where the list element is either a named list or a list of formulas defining the statistic labels, e.g. everything() ~ list(mean = "Mean", sd = "SD") or everything() ~ list(mean ~ "Mean", sd ~ "SD").

...

These dots are for future extensions and must be empty.

Value

an ARD data frame of class 'card'

statistic argument

The following statistics are available: 'mean', 'median', 'min', 'max', 'sum', 'var', 'sd', 'mean.std.error', 'deff', 'p##', where 'p##' is are the percentiles and ⁠##⁠ is an integer between 0 and 100.

Examples

data(api, package = "survey")
dclus1 <- survey::svydesign(id = ~dnum, weights = ~pw, data = apiclus1, fpc = ~fpc)

ard_continuous(
  data = dclus1,
  variables = api00,
  by = stype
)

ARD Dichotomous Survey Statistics

Description

Compute Analysis Results Data (ARD) for dichotomous summary statistics.

Usage

## S3 method for class 'survey.design'
ard_dichotomous(
  data,
  variables,
  by = NULL,
  value = cards::maximum_variable_value(data$variables[variables]),
  statistic = everything() ~ c("n", "N", "p", "p.std.error", "deff", "n_unweighted",
    "N_unweighted", "p_unweighted"),
  denominator = c("column", "row", "cell"),
  fmt_fn = NULL,
  stat_label = everything() ~ list(p = "%", p.std.error = "SE(%)", deff =
    "Design Effect", n_unweighted = "Unweighted n", N_unweighted = "Unweighted N",
    p_unweighted = "Unweighted %"),
  ...
)

Arguments

data

(survey.design)
a design object often created with survey::svydesign().

variables

(tidy-select)
columns to include in summaries.

by

(tidy-select)
results are calculated for all combinations of the column specified and the variables. A single column may be specified.

value

(named list)
named list of dichotomous values to tabulate. Default is cards::maximum_variable_value(data$variables), which returns the largest/last value after a sort.

statistic

(formula-list-selector)
a named list, a list of formulas, or a single formula where the list element is a character vector of statistic names to include. See default value for options.

denominator

(string)
a string indicating the type proportions to calculate. Must be one of "column" (the default), "row", and "cell".

fmt_fn

(formula-list-selector)
a named list, a list of formulas, or a single formula where the list element is a named list of functions (or the RHS of a formula), e.g. ⁠list(mpg = list(mean = \(x) round(x, digits = 2) |> as.character()))⁠.

stat_label

(formula-list-selector)
a named list, a list of formulas, or a single formula where the list element is either a named list or a list of formulas defining the statistic labels, e.g. everything() ~ list(mean = "Mean", sd = "SD") or everything() ~ list(mean ~ "Mean", sd ~ "SD").

...

These dots are for future extensions and must be empty.

Value

an ARD data frame of class 'card'

Examples

survey::svydesign(ids = ~1, data = mtcars, weights = ~1) |>
  ard_dichotomous(by = vs, variables = c(cyl, am), value = list(cyl = 4))

ARD Cohen's D Test

Description

Analysis results data for paired and non-paired Cohen's D Effect Size Test using effectsize::cohens_d().

Usage

ard_effectsize_cohens_d(data, by, variables, conf.level = 0.95, ...)

ard_effectsize_paired_cohens_d(data, by, variables, id, conf.level = 0.95, ...)

Arguments

data

(data.frame)
a data frame. See below for details.

by

(tidy-select)
column name to compare by. Must be a categorical variable with exactly two levels.

variables

(tidy-select)
column names to be compared. Must be a continuous variables. Independent tests will be run for each variable.

conf.level

(scalar numeric)
confidence level for confidence interval. Default is 0.95.

...

arguments passed to effectsize::cohens_d(...)

id

(tidy-select)
column name of the subject or participant ID

Details

For the ard_effectsize_cohens_d() function, the data is expected to be one row per subject. The data is passed as effectsize::cohens_d(data[[variable]]~data[[by]], data, paired = FALSE, ...).

For the ard_effectsize_paired_cohens_d() function, the data is expected to be one row per subject per by level. Before the effect size is calculated, the data are reshaped to a wide format to be one row per subject. The data are then passed as ⁠effectsize::cohens_d(x = data_wide[[<by level 1>]], y = data_wide[[<by level 2>]], paired = TRUE, ...)⁠.

Value

ARD data frame

Examples

cards::ADSL |>
  dplyr::filter(ARM %in% c("Placebo", "Xanomeline High Dose")) |>
  ard_effectsize_cohens_d(by = ARM, variables = AGE)

# constructing a paired data set,
# where patients receive both treatments
cards::ADSL[c("ARM", "AGE")] |>
  dplyr::filter(ARM %in% c("Placebo", "Xanomeline High Dose")) |>
  dplyr::mutate(.by = ARM, USUBJID = dplyr::row_number()) |>
  dplyr::arrange(USUBJID, ARM) |>
  dplyr::group_by(USUBJID) |>
  dplyr::filter(dplyr::n() > 1) |>
  ard_effectsize_paired_cohens_d(by = ARM, variables = AGE, id = USUBJID)

ARD Hedge's G Test

Description

Analysis results data for paired and non-paired Hedge's G Effect Size Test using effectsize::hedges_g().

Usage

ard_effectsize_hedges_g(data, by, variables, conf.level = 0.95, ...)

ard_effectsize_paired_hedges_g(data, by, variables, id, conf.level = 0.95, ...)

Arguments

data

(data.frame)
a data frame. See below for details.

by

(tidy-select)
column name to compare by. Must be a categorical variable with exactly two levels.

variables

(tidy-select)
column names to be compared. Must be a continuous variable. Independent tests will be run for each variable

conf.level

(scalar numeric)
confidence level for confidence interval. Default is 0.95.

...

arguments passed to effectsize::hedges_g(...)

id

(tidy-select)
column name of the subject or participant ID

Details

For the ard_effectsize_hedges_g() function, the data is expected to be one row per subject. The data is passed as effectsize::hedges_g(data[[variable]]~data[[by]], data, paired = FALSE, ...).

For the ard_effectsize_paired_hedges_g() function, the data is expected to be one row per subject per by level. Before the effect size is calculated, the data are reshaped to a wide format to be one row per subject. The data are then passed as ⁠effectsize::hedges_g(x = data_wide[[<by level 1>]], y = data_wide[[<by level 2>]], paired = TRUE, ...)⁠.

Value

ARD data frame

Examples

cards::ADSL |>
  dplyr::filter(ARM %in% c("Placebo", "Xanomeline High Dose")) |>
  ard_effectsize_hedges_g(by = ARM, variables = AGE)

# constructing a paired data set,
# where patients receive both treatments
cards::ADSL[c("ARM", "AGE")] |>
  dplyr::filter(ARM %in% c("Placebo", "Xanomeline High Dose")) |>
  dplyr::mutate(.by = ARM, USUBJID = dplyr::row_number()) |>
  dplyr::arrange(USUBJID, ARM) |>
  dplyr::group_by(USUBJID) |>
  dplyr::filter(dplyr::n() > 1) |>
  ard_effectsize_paired_hedges_g(by = ARM, variables = AGE, id = USUBJID)

ARD for LS Mean Difference

Description

This function calculates least-squares mean differences using the 'emmeans' package using the following

emmeans::emmeans(object = <regression model>, specs = ~ <primary covariate>) |>
  emmeans::contrast(method = "pairwise") |>
  summary(infer = TRUE, level = <confidence level>)

The arguments data, formula, method, method.args, package are used to construct the regression model via cardx::construct_model().

Usage

ard_emmeans_mean_difference(
  data,
  formula,
  method,
  method.args = list(),
  package = "base",
  response_type = c("continuous", "dichotomous"),
  conf.level = 0.95,
  primary_covariate = getElement(attr(stats::terms(formula), "term.labels"), 1L)
)

Arguments

data

(data.frame/survey.design)
a data frame or survey design object

formula

(formula)
a formula

method

(string)
string of function naming the function to be called, e.g. "glm". If function belongs to a library that is not attached, the package name must be specified in the package argument.

method.args

(named list)
named list of arguments that will be passed to method.

Note that this list may contain non-standard evaluation components. If you are wrapping this function in other functions, the argument must be passed in a way that does not evaluate the list, e.g. using rlang's embrace operator {{ . }}.

package

(string)
string of package name that will be temporarily loaded when function specified in method is executed.

response_type

(string) string indicating whether the model outcome is 'continuous' or 'dichotomous'. When 'dichotomous', the call to emmeans::emmeans() is supplemented with argument regrid="response".

conf.level

(scalar numeric)
confidence level for confidence interval. Default is 0.95.

primary_covariate

(string)
string indicating the primary covariate (typically the dichotomous treatment variable). Default is the first covariate listed in the formula.

Value

ARD data frame

Examples

ard_emmeans_mean_difference(
  data = mtcars,
  formula = mpg ~ am + cyl,
  method = "lm"
)

ard_emmeans_mean_difference(
  data = mtcars,
  formula = vs ~ am + mpg,
  method = "glm",
  method.args = list(family = binomial),
  response_type = "dichotomous"
)

ARD Missing Survey Statistics

Description

Compute Analysis Results Data (ARD) for statistics related to data missingness for survey objects

Usage

## S3 method for class 'survey.design'
ard_missing(
  data,
  variables,
  by = NULL,
  statistic = everything() ~ c("N_obs", "N_miss", "N_nonmiss", "p_miss", "p_nonmiss",
    "N_obs_unweighted", "N_miss_unweighted", "N_nonmiss_unweighted", "p_miss_unweighted",
    "p_nonmiss_unweighted"),
  fmt_fn = NULL,
  stat_label = everything() ~ list(N_obs = "Total N", N_miss = "N Missing", N_nonmiss =
    "N not Missing", p_miss = "% Missing", p_nonmiss = "% not Missing",
    N_obs_unweighted = "Total N (unweighted)", N_miss_unweighted =
    "N Missing (unweighted)", N_nonmiss_unweighted = "N not Missing (unweighted)",
    p_miss_unweighted = "% Missing (unweighted)", p_nonmiss_unweighted =
    "% not Missing (unweighted)"),
  ...
)

Arguments

data

(survey.design)
a design object often created with survey::svydesign().

variables

(tidy-select)
columns to include in summaries.

by

(tidy-select)
results are calculated for all combinations of the column specified and the variables. A single column may be specified.

statistic

(formula-list-selector)
a named list, a list of formulas, or a single formula where the list element is a character vector of statistic names to include. See default value for options.

fmt_fn

(formula-list-selector)
a named list, a list of formulas, or a single formula where the list element is a named list of functions (or the RHS of a formula), e.g. ⁠list(mpg = list(mean = \(x) round(x, digits = 2) |> as.character()))⁠.

stat_label

(formula-list-selector)
a named list, a list of formulas, or a single formula where the list element is either a named list or a list of formulas defining the statistic labels, e.g. everything() ~ list(mean = "Mean", sd = "SD") or everything() ~ list(mean ~ "Mean", sd ~ "SD").

...

These dots are for future extensions and must be empty.

Value

an ARD data frame of class 'card'

Examples

svy_titanic <- survey::svydesign(~1, data = as.data.frame(Titanic), weights = ~Freq)

ard_missing(svy_titanic, variables = c(Class, Age), by = Survived)

Regression ARD

Description

Function takes a regression model object and converts it to a ARD structure using the broom.helpers package.

Usage

ard_regression(x, ...)

## Default S3 method:
ard_regression(x, tidy_fun = broom.helpers::tidy_with_broom_or_parameters, ...)

Arguments

x

regression model object

...

Arguments passed to broom.helpers::tidy_plus_plus()

tidy_fun

(function)
a tidier. Default is broom.helpers::tidy_with_broom_or_parameters

Value

data frame

Examples

lm(AGE ~ ARM, data = cards::ADSL) |>
  ard_regression(add_estimate_to_reference_rows = TRUE)

Basic Regression ARD

Description

A function that takes a regression model and provides basic statistics in an ARD structure. The default output is simpler than ard_regression(). The function primarily matches regression terms to underlying variable names and levels. The default arguments used are

broom.helpers::tidy_plus_plus(
  add_reference_rows = FALSE,
  add_estimate_to_reference_rows = FALSE,
  add_n = FALSE,
  intercept = FALSE
)

Usage

ard_regression_basic(
  x,
  tidy_fun = broom.helpers::tidy_with_broom_or_parameters,
  stats_to_remove = c("term", "var_type", "var_label", "var_class", "label",
    "contrasts_type", "contrasts", "var_nlevels"),
  ...
)

Arguments

x

regression model object

tidy_fun

(function)
a tidier. Default is broom.helpers::tidy_with_broom_or_parameters

stats_to_remove

(character)
character vector of statistic names to remove. Default is c("term", "var_type", "var_label", "var_class", "label", "contrasts_type", "contrasts", "var_nlevels").

...

Arguments passed to broom.helpers::tidy_plus_plus()

Value

data frame

Examples

lm(AGE ~ ARM, data = cards::ADSL) |>
  ard_regression_basic()

ARD Standardized Mean Difference

Description

Standardized mean difference calculated via smd::smd() with na.rm = TRUE. Additionally, this function add a confidence interval to the SMD when std.error=TRUE, which the original smd::smd() does not include.

Usage

ard_smd_smd(data, by, variables, std.error = TRUE, conf.level = 0.95, ...)

Arguments

data

(data.frame/survey.design)
a data frame or object of class 'survey.design' (typically created with survey::svydesign()).

by

(tidy-select)
column name to compare by.

variables

(tidy-select)
column names to be compared. Independent tests will be computed for each variable.

std.error

(scalar logical)
Logical indicator for computing standard errors using smd::compute_smd_var(). Default is TRUE.

conf.level

(scalar numeric)
confidence level for confidence interval. Default is 0.95.

...

arguments passed to smd::smd()

Value

ARD data frame

Examples

ard_smd_smd(cards::ADSL, by = SEX, variables = AGE)
ard_smd_smd(cards::ADSL, by = SEX, variables = AGEGR1)

ARD ANOVA

Description

Prepare ANOVA results from the stats::anova() function. Users may pass a pre-calculated stats::anova() object or a list of formulas. In the latter case, the models will be constructed using the information passed and models will be passed to stats::anova().

Usage

ard_stats_anova(x, ...)

## S3 method for class 'anova'
ard_stats_anova(x, method_text = "ANOVA results from `stats::anova()`", ...)

## S3 method for class 'data.frame'
ard_stats_anova(
  x,
  formulas,
  method,
  method.args = list(),
  package = "base",
  method_text = "ANOVA results from `stats::anova()`",
  ...
)

Arguments

x

(anova or data.frame)
an object of class 'anova' created with stats::anova() or a data frame

...

These dots are for future extensions and must be empty.

method_text

(string)
string of the method used. Default is ⁠"ANOVA results from ⁠stats::anova()⁠"⁠. We provide the option to change this as stats::anova() can produce results from many types of models that may warrant a more precise description.

formulas

(list)
a list of formulas

method

(string)
string of function naming the function to be called, e.g. "glm". If function belongs to a library that is not attached, the package name must be specified in the package argument.

method.args

(named list)
named list of arguments that will be passed to method.

Note that this list may contain non-standard evaluation components. If you are wrapping this function in other functions, the argument must be passed in a way that does not evaluate the list, e.g. using rlang's embrace operator {{ . }}.

package

(string)
string of package name that will be temporarily loaded when function specified in method is executed.

Details

When a list of formulas is supplied to ard_stats_anova(), these formulas along with information from other arguments, are used to construct models and pass those models to stats::anova().

The models are constructed using rlang::exec(), which is similar to do.call().

rlang::exec(.fn = method, formula = formula, data = data, !!!method.args)

The above function is executed in withr::with_namespace(package), which allows for the use of ard_stats_anova(method) from packages, e.g. package = 'lme4' must be specified when method = 'glmer'. See example below.

Value

ARD data frame

Examples

anova(
  lm(mpg ~ am, mtcars),
  lm(mpg ~ am + hp, mtcars)
) |>
  ard_stats_anova()

ard_stats_anova(
  x = mtcars,
  formulas = list(am ~ mpg, am ~ mpg + hp),
  method = "glm",
  method.args = list(family = binomial)
)

ard_stats_anova(
  x = mtcars,
  formulas = list(am ~ 1 + (1 | vs), am ~ mpg + (1 | vs)),
  method = "glmer",
  method.args = list(family = binomial),
  package = "lme4"
)

ARD ANOVA

Description

Analysis results data for Analysis of Variance. Calculated with stats::aov()

Usage

ard_stats_aov(formula, data, ...)

Arguments

formula

A formula specifying the model.

data

A data frame in which the variables specified in the formula will be found. If missing, the variables are searched for in the standard way.

...

arguments passed to stats::aov(...)

Value

ARD data frame

Examples

ard_stats_aov(AGE ~ ARM, data = cards::ADSL)

ARD Chi-squared Test

Description

Analysis results data for Pearson's Chi-squared Test. Calculated with chisq.test(x = data[[variable]], y = data[[by]], ...)

Usage

ard_stats_chisq_test(data, by, variables, ...)

Arguments

data

(data.frame)
a data frame.

by

(tidy-select)
column name to compare by.

variables

(tidy-select)
column names to be compared. Independent tests will be computed for each variable.

...

additional arguments passed to chisq.test(...)

Value

ARD data frame

Examples

cards::ADSL |>
  ard_stats_chisq_test(by = "ARM", variables = "AGEGR1")

ARD Fisher's Exact Test

Description

Analysis results data for Fisher's Exact Test. Calculated with fisher.test(x = data[[variable]], y = data[[by]], ...)

Usage

ard_stats_fisher_test(data, by, variables, conf.level = 0.95, ...)

Arguments

data

(data.frame)
a data frame.

by

(tidy-select)
column name to compare by

variables

(tidy-select)
column names to be compared. Independent tests will be computed for each variable.

conf.level

(scalar numeric)
confidence level for confidence interval. Default is 0.95.

...

additional arguments passed to fisher.test(...)

Value

ARD data frame

Examples

cards::ADSL[1:30, ] |>
  ard_stats_fisher_test(by = "ARM", variables = "AGEGR1")

ARD Kruskal-Wallis Test

Description

Analysis results data for Kruskal-Wallis Rank Sum Test.

Calculated with kruskal.test(data[[variable]], data[[by]], ...)

Usage

ard_stats_kruskal_test(data, by, variables)

Arguments

data

(data.frame)
a data frame.

by

(tidy-select)
column name to compare by.

variables

(tidy-select)
column names to be compared. Independent tests will be computed for each variable.

Value

ARD data frame

Examples

cards::ADSL |>
  ard_stats_kruskal_test(by = "ARM", variables = "AGE")

ARD McNemar's Test

Description

Analysis results data for McNemar's statistical test. We have two functions depending on the structure of the data.

  • ard_stats_mcnemar_test() is the structure expected by stats::mcnemar.test()

  • ard_stats_mcnemar_test_long() is one row per ID per group

Usage

ard_stats_mcnemar_test(data, by, variables, ...)

ard_stats_mcnemar_test_long(data, by, variables, id, ...)

Arguments

data

(data.frame)
a data frame. See below for details.

by

(tidy-select)
column name to compare by.

variables

(tidy-select)
column names to be compared. Independent tests will be computed for each variable.

...

arguments passed to stats::mcnemar.test(...)

id

(tidy-select)
column name of the subject or participant ID

Details

For the ard_stats_mcnemar_test() function, the data is expected to be one row per subject. The data is passed as stats::mcnemar.test(x = data[[variable]], y = data[[by]], ...). Please use table(x = data[[variable]], y = data[[by]]) to check the contingency table.

Value

ARD data frame

Examples

cards::ADSL |>
  ard_stats_mcnemar_test(by = "SEX", variables = "EFFFL")

set.seed(1234)
cards::ADSL[c("USUBJID", "TRT01P")] |>
  dplyr::mutate(TYPE = "PLANNED") |>
  dplyr::rename(TRT01 = TRT01P) %>%
  dplyr::bind_rows(dplyr::mutate(., TYPE = "ACTUAL", TRT01 = sample(TRT01))) |>
  ard_stats_mcnemar_test_long(
    by = TYPE,
    variable = TRT01,
    id = USUBJID
  )

ARD Mood Test

Description

Analysis results data for Mood two sample test of scale. Note this not to be confused with the Brown-Mood test of medians.

Usage

ard_stats_mood_test(data, by, variables, ...)

Arguments

data

(data.frame)
a data frame. See below for details.

by

(tidy-select)
column name to compare by.

variables

(tidy-select)
column name to be compared. Independent tests will be run for each variable.

...

arguments passed to mood.test(...)

Details

For the ard_stats_mood_test() function, the data is expected to be one row per subject. The data is passed as mood.test(data[[variable]] ~ data[[by]], ...).

Value

ARD data frame

Examples

cards::ADSL |>
  ard_stats_mood_test(by = "SEX", variables = "AGE")

ARD One-way Test

Description

Analysis results data for Testing Equal Means in a One-Way Layout. calculated with oneway.test()

Usage

ard_stats_oneway_test(formula, data, ...)

Arguments

formula

a formula of the form lhs ~ rhs where lhs gives the sample values and rhs the corresponding groups.

data

an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).

...

additional arguments passed to oneway.test(...)

Value

ARD data frame

Examples

ard_stats_oneway_test(AGE ~ ARM, data = cards::ADSL)

ARD Poisson Test

Description

Analysis results data for exact tests of a simple null hypothesis about the rate parameter in Poisson distribution, or the comparison of two rate parameters.

Usage

ard_stats_poisson_test(
  data,
  variables,
  na.rm = TRUE,
  by = NULL,
  conf.level = 0.95,
  ...
)

Arguments

data

(data.frame)
a data frame. See below for details.

variables

(tidy-select)
names of the event and time variables (in that order) to be used in computations. Must be of length 2.

na.rm

(scalar logical)
whether missing values should be removed before computations. Default is TRUE.

by

(tidy-select)
optional column name to compare by.

conf.level

(scalar numeric)
confidence level for confidence interval. Default is 0.95.

...

arguments passed to poisson.test().

Details

  • For the ard_stats_poisson_test() function, the data is expected to be one row per subject.

  • If by is not specified, an exact Poisson test of the rate parameter will be performed. Otherwise, a Poisson comparison of two rate parameters will be performed on the levels of by. If by has more than 2 levels, an error will occur.

Value

an ARD data frame of class 'card'

Examples

# Exact test of rate parameter against null hypothesis
cards::ADTTE |>
  ard_stats_poisson_test(variables = c(CNSR, AVAL))

# Comparison test of ratio of 2 rate parameters against null hypothesis
cards::ADTTE |>
  dplyr::filter(TRTA %in% c("Placebo", "Xanomeline High Dose")) |>
  ard_stats_poisson_test(by = TRTA, variables = c(CNSR, AVAL))

ARD 2-sample proportion test

Description

Analysis results data for a 2-sample test or proportions using stats::prop.test().

Usage

ard_stats_prop_test(data, by, variables, conf.level = 0.95, ...)

Arguments

data

(data.frame)
a data frame.

by

(tidy-select)
column name to compare by

variables

(tidy-select)
column names to be compared. Must be a binary column coded as TRUE/FALSE or 1/0. Independent tests will be computed for each variable.

conf.level

(scalar numeric)
confidence level for confidence interval. Default is 0.95.

...

arguments passed to prop.test(...)

Value

ARD data frame

Examples

mtcars |>
  ard_stats_prop_test(by = vs, variables = am)

ARD t-test

Description

Analysis results data for paired and non-paired t-tests.

Usage

ard_stats_t_test(data, variables, by = NULL, conf.level = 0.95, ...)

ard_stats_paired_t_test(data, by, variables, id, conf.level = 0.95, ...)

Arguments

data

(data.frame)
a data frame. See below for details.

variables

(tidy-select)
column names to be compared. Independent t-tests will be computed for each variable.

by

(tidy-select)
optional column name to compare by.

conf.level

(scalar numeric)
confidence level for confidence interval. Default is 0.95.

...

arguments passed to t.test()

id

(tidy-select)
column name of the subject or participant ID

Details

For the ard_stats_t_test() function, the data is expected to be one row per subject. The data is passed as t.test(data[[variable]] ~ data[[by]], paired = FALSE, ...).

For the ard_stats_paired_t_test() function, the data is expected to be one row per subject per by level. Before the t-test is calculated, the data are reshaped to a wide format to be one row per subject. The data are then passed as ⁠t.test(x = data_wide[[<by level 1>]], y = data_wide[[<by level 2>]], paired = TRUE, ...)⁠.

Value

ARD data frame

Examples

cards::ADSL |>
  dplyr::filter(ARM %in% c("Placebo", "Xanomeline High Dose")) |>
  ard_stats_t_test(by = ARM, variables = c(AGE, BMIBL))

# constructing a paired data set,
# where patients receive both treatments
cards::ADSL[c("ARM", "AGE")] |>
  dplyr::filter(ARM %in% c("Placebo", "Xanomeline High Dose")) |>
  dplyr::mutate(.by = ARM, USUBJID = dplyr::row_number()) |>
  dplyr::arrange(USUBJID, ARM) |>
  ard_stats_paired_t_test(by = ARM, variables = AGE, id = USUBJID)

ARD one-sample t-test

Description

Analysis results data for one-sample t-tests. Result may be stratified by including the by argument.

Usage

ard_stats_t_test_onesample(
  data,
  variables,
  by = dplyr::group_vars(data),
  conf.level = 0.95,
  ...
)

Arguments

data

(data.frame)
a data frame. See below for details.

variables

(tidy-select)
column names to be analyzed. Independent t-tests will be computed for each variable.

by

(tidy-select)
optional column name to stratify results by.

conf.level

(scalar numeric)
confidence level for confidence interval. Default is 0.95.

...

arguments passed to t.test()

Value

ARD data frame

Examples

cards::ADSL |>
  ard_stats_t_test_onesample(by = ARM, variables = AGE)

ARD Wilcoxon Rank-Sum Test

Description

Analysis results data for paired and non-paired Wilcoxon Rank-Sum tests.

Usage

ard_stats_wilcox_test(data, variables, by = NULL, conf.level = 0.95, ...)

ard_stats_paired_wilcox_test(data, by, variables, id, conf.level = 0.95, ...)

Arguments

data

(data.frame)
a data frame. See below for details.

variables

(tidy-select)
column names to be compared. Independent tests will be computed for each variable.

by

(tidy-select)
optional column name to compare by.

conf.level

(scalar numeric)
confidence level for confidence interval. Default is 0.95.

...

arguments passed to wilcox.test(...)

id

(tidy-select)
column name of the subject or participant ID.

Details

For the ard_stats_wilcox_test() function, the data is expected to be one row per subject. The data is passed as wilcox.test(data[[variable]] ~ data[[by]], paired = FALSE, ...).

For the ard_stats_paired_wilcox_test() function, the data is expected to be one row per subject per by level. Before the test is calculated, the data are reshaped to a wide format to be one row per subject. The data are then passed as ⁠wilcox.test(x = data_wide[[<by level 1>]], y = data_wide[[<by level 2>]], paired = TRUE, ...)⁠.

Value

ARD data frame

Examples

cards::ADSL |>
  dplyr::filter(ARM %in% c("Placebo", "Xanomeline High Dose")) |>
  ard_stats_wilcox_test(by = "ARM", variables = "AGE")

# constructing a paired data set,
# where patients receive both treatments
cards::ADSL[c("ARM", "AGE")] |>
  dplyr::filter(ARM %in% c("Placebo", "Xanomeline High Dose")) |>
  dplyr::mutate(.by = ARM, USUBJID = dplyr::row_number()) |>
  dplyr::arrange(USUBJID, ARM) |>
  ard_stats_paired_wilcox_test(by = ARM, variables = AGE, id = USUBJID)

ARD one-sample Wilcox Rank-sum

Description

Analysis results data for one-sample Wilcox Rank-sum. Result may be stratified by including the by argument.

Usage

ard_stats_wilcox_test_onesample(
  data,
  variables,
  by = dplyr::group_vars(data),
  conf.level = 0.95,
  ...
)

Arguments

data

(data.frame)
a data frame. See below for details.

variables

(tidy-select)
column names to be analyzed. Independent Wilcox Rank-sum tests will be computed for each variable.

by

(tidy-select)
optional column name to stratify results by.

conf.level

(scalar numeric)
confidence level for confidence interval. Default is 0.95.

...

arguments passed to wilcox.test(...)

Value

ARD data frame

Examples

cards::ADSL |>
  ard_stats_wilcox_test_onesample(by = ARM, variables = AGE)

ARD Survey Chi-Square Test

Description

Analysis results data for survey Chi-Square test using survey::svychisq(). Only two-way comparisons are supported.

Usage

ard_survey_svychisq(data, by, variables, statistic = "F", ...)

Arguments

data

(survey.design)
a survey design object often created with the {survey} package

by

(tidy-select)
column name to compare by.

variables

(tidy-select)
column names to be compared. Independent tests will be computed for each variable.

statistic

(character)
statistic used to estimate Chisq p-value. Default is the Rao-Scott second-order correction ("F"). See survey::svychisq for available statistics options.

...

arguments passed to survey::svychisq().

Value

ARD data frame

Examples

data(api, package = "survey")
dclus1 <- survey::svydesign(id = ~dnum, weights = ~pw, data = apiclus1, fpc = ~fpc)

ard_survey_svychisq(dclus1, variables = sch.wide, by = comp.imp, statistic = "F")

ARD Survey rank test

Description

Analysis results data for survey wilcox test using survey::svyranktest().

Usage

ard_survey_svyranktest(data, by, variables, test, ...)

Arguments

data

(survey.design)
a survey design object often created with survey::svydesign()

by

(tidy-select)
column name to compare by

variables

(tidy-select)
column names to be compared. Independent tests will be run for each variable.

test

(string)
a string to denote which rank test to use: "wilcoxon", "vanderWaerden", "median", "KruskalWallis"

...

arguments passed to survey::svyranktest()

Value

ARD data frame

Examples

data(api, package = "survey")
dclus2 <- survey::svydesign(id = ~ dnum + snum, fpc = ~ fpc1 + fpc2, data = apiclus2)

ard_survey_svyranktest(dclus2, variables = enroll, by = comp.imp, test = "wilcoxon")
ard_survey_svyranktest(dclus2, variables = enroll, by = comp.imp, test = "vanderWaerden")
ard_survey_svyranktest(dclus2, variables = enroll, by = comp.imp, test = "median")
ard_survey_svyranktest(dclus2, variables = enroll, by = comp.imp, test = "KruskalWallis")

ARD Survey t-test

Description

Analysis results data for survey t-test using survey::svyttest().

Usage

ard_survey_svyttest(data, by, variables, conf.level = 0.95, ...)

Arguments

data

(survey.design)
a survey design object often created with survey::svydesign()

by

(tidy-select)
column name to compare by

variables

(tidy-select)
column names to be compared. Independent tests will be run for each variable.

conf.level

(double)
confidence level of the returned confidence interval. Must be between c(0, 1). Default is 0.95

...

arguments passed to survey::svyttest()

Value

ARD data frame

Examples

data(api, package = "survey")
dclus2 <- survey::svydesign(id = ~ dnum + snum, fpc = ~ fpc1 + fpc2, data = apiclus2)

ard_survey_svyttest(dclus2, variables = enroll, by = comp.imp, conf.level = 0.9)

ARD for Difference in Survival

Description

Analysis results data for comparison of survival using survival::survdiff().

Usage

ard_survival_survdiff(formula, data, rho = 0, ...)

Arguments

formula

(formula)
a formula

data

(data.frame)
a data frame

rho

(⁠scalar numeric⁠)
numeric scalar passed to survival::survdiff(rho). Default is rho=0.

...

additional arguments passed to survival::survdiff()

Value

an ARD data frame of class 'card'

Examples

library(survival)
library(ggsurvfit)

ard_survival_survdiff(Surv_CNSR(AVAL, CNSR) ~ TRTA, data = cards::ADTTE)

ARD Survival Estimates

Description

Analysis results data for survival quantiles and x-year survival estimates, extracted from a survival::survfit() model.

Usage

ard_survival_survfit(x, ...)

## S3 method for class 'survfit'
ard_survival_survfit(x, times = NULL, probs = NULL, type = NULL, ...)

## S3 method for class 'data.frame'
ard_survival_survfit(
  x,
  y,
  variables,
  times = NULL,
  probs = NULL,
  type = NULL,
  method.args = list(conf.int = 0.95),
  ...
)

Arguments

x

(survfit or data.frame)
an object of class survfit created with survival::survfit() or a data frame. See below for details.

...

These dots are for future extensions and must be empty.

times

(numeric)
a vector of times for which to return survival probabilities.

probs

(numeric)
a vector of probabilities with values in (0,1) specifying the survival quantiles to return.

type

(string or NULL)
type of statistic to report. Available for Kaplan-Meier time estimates only, otherwise type is ignored. Default is NULL. Must be one of the following:

type transformation
"survival" x
"risk" 1 - x
"cumhaz" -log(x)
y

(Surv or string)
an object of class Surv created using survival::Surv(). This object will be passed as the left-hand side of the formula constructed and passed to survival::survfit(). This object can also be passed as a string.

variables

(character)
stratification variables to be passed as the right-hand side of the formula constructed and passed to survival::survfit().

method.args

(named list)
named list of arguments that will be passed to survival::survfit().

Details

  • Only one of either the times or probs parameters can be specified.

  • Times should be provided using the same scale as the time variable used to fit the provided survival fit model.

Value

an ARD data frame of class 'card'

Formula Specification

When passing a survival::survfit() object to ard_survival_survfit(), the survfit() call must use an evaluated formula and not a stored formula. Including a proper formula in the call allows the function to accurately identify all variables included in the estimation. See below for examples:

library(cardx)
library(survival)

# include formula in `survfit()` call
survfit(Surv(time, status) ~ sex, lung) |> ard_survival_survfit(time = 500)

# you can also pass a data frame to `ard_survival_survfit()` as well.
lung |>
  ard_survival_survfit(y = Surv(time, status), variables = "sex", time = 500)

You cannot, however, pass a stored formula, e.g. survfit(my_formula, lung), but you can use stored formulas with rlang::inject(survfit(!!my_formula, lung)).

Variable Classes

When the survfit method is called, the class of the stratifying variables will be returned as a factor.

When the data frame method is called, the original classes are retained in the resulting ARD.

Examples

library(survival)
library(ggsurvfit)

survfit(Surv_CNSR(AVAL, CNSR) ~ TRTA, data = cards::ADTTE) |>
  ard_survival_survfit(times = c(60, 180))

survfit(Surv_CNSR(AVAL, CNSR) ~ TRTA, data = cards::ADTTE, conf.int = 0.90) |>
  ard_survival_survfit(probs = c(0.25, 0.5, 0.75))

cards::ADTTE |>
  ard_survival_survfit(y = Surv_CNSR(AVAL, CNSR), variables = c("TRTA", "SEX"), times = 90)

# Competing Risks Example ---------------------------
set.seed(1)
ADTTE_MS <- cards::ADTTE %>%
  dplyr::mutate(
    CNSR = dplyr::case_when(
      CNSR == 0 ~ "censor",
      runif(dplyr::n()) < 0.5 ~ "death from cancer",
      TRUE ~ "death other causes"
    ) %>% factor()
  )

survfit(Surv(AVAL, CNSR) ~ TRTA, data = ADTTE_MS) %>%
  ard_survival_survfit(times = c(60, 180))

ARD Survival Differences

Description

Calculate differences in the Kaplan-Meier estimator of survival using the results from survival::survfit().

Usage

ard_survival_survfit_diff(x, times, conf.level = 0.95)

Arguments

x

(survift)
object of class 'survfit' typically created with survival::survfit()

times

(numeric)
a vector of times for which to return survival probabilities.

conf.level

(scalar numeric)
confidence level for confidence interval. Default is 0.95.

Value

an ARD data frame of class 'card'

Examples

library(ggsurvfit)
library(survival)

survfit(Surv_CNSR() ~ TRTA, data = cards::ADTTE) |>
  ard_survival_survfit_diff(times = c(25, 50))

ARD Total N

Description

Returns the total N for a survey object. The placeholder variable name returned in the object is "..ard_total_n.."

Usage

## S3 method for class 'survey.design'
ard_total_n(data, ...)

Arguments

data

(survey.design)
a design object often created with survey::svydesign().

...

These dots are for future extensions and must be empty.

Value

an ARD data frame of class 'card'

Examples

svy_titanic <- survey::svydesign(~1, data = as.data.frame(Titanic), weights = ~Freq)

ard_total_n(svy_titanic)

Construction Helpers

Description

These functions help construct calls to various types of models.

Usage

construct_model(data, ...)

## S3 method for class 'data.frame'
construct_model(
  data,
  formula,
  method,
  method.args = list(),
  package = "base",
  env = caller_env(),
  ...
)

## S3 method for class 'survey.design'
construct_model(
  data,
  formula,
  method,
  method.args = list(),
  package = "survey",
  env = caller_env(),
  ...
)

reformulate2(
  termlabels,
  response = NULL,
  intercept = TRUE,
  env = parent.frame(),
  pattern_term = NULL,
  pattern_response = NULL
)

bt(x, pattern = NULL)

bt_strip(x)

Arguments

data
  • construct_model.data.frame() (data.frame) a data frame

  • construct_model.survey.design() (survey.design) a survey design object

...

These dots are for future extensions and must be empty.

formula

(formula)
a formula

method

(string)
string of function naming the function to be called, e.g. "glm". If function belongs to a library that is not attached, the package name must be specified in the package argument.

method.args

(named list)
named list of arguments that will be passed to method.

Note that this list may contain non-standard evaluation components. If you are wrapping this function in other functions, the argument must be passed in a way that does not evaluate the list, e.g. using rlang's embrace operator {{ . }}.

package

(string)
string of package name that will be temporarily loaded when function specified in method is executed.

env

The environment in which to evaluate expr. This environment is not applicable for quosures because they have their own environments.

termlabels

character vector giving the right-hand side of a model formula. Cannot be zero-length.

response

character string, symbol or call giving the left-hand side of a model formula, or NULL.

intercept

logical: should the formula have an intercept?

x

(character)
character vector, typically of variable names

pattern, pattern_term, pattern_response

DEPRECATED

Details

  • construct_model(): Builds models of the form ⁠method(data = data, formula = formula, method.args!!!)⁠. If the package argument is specified, that package is temporarily attached when the model is evaluated.

  • reformulate2(): This is a copy of reformulate() except that variable names that contain a space are wrapped in backticks.

  • bt(): Adds backticks to a character vector.

  • bt_strip(): Removes backticks from a string if it begins and ends with a backtick.

Value

depends on the calling function

Examples

construct_model(
  data = mtcars,
  formula = am ~ mpg + (1 | vs),
  method = "glmer",
  method.args = list(family = binomial),
  package = "lme4"
) |>
  broom.mixed::tidy()

construct_model(
  data = mtcars |> dplyr::rename(`M P G` = mpg),
  formula = reformulate2(c("M P G", "cyl"), response = "hp"),
  method = "lm"
) |>
  ard_regression() |>
  dplyr::filter(stat_name %in% c("term", "estimate", "p.value"))

Functions for Calculating Proportion Confidence Intervals

Description

Functions to calculate different proportion confidence intervals for use in ard_proportion().

Usage

proportion_ci_wald(x, conf.level = 0.95, correct = FALSE)

proportion_ci_wilson(x, conf.level = 0.95, correct = FALSE)

proportion_ci_clopper_pearson(x, conf.level = 0.95)

proportion_ci_agresti_coull(x, conf.level = 0.95)

proportion_ci_jeffreys(x, conf.level = 0.95)

proportion_ci_strat_wilson(
  x,
  strata,
  weights = NULL,
  conf.level = 0.95,
  max.iterations = 10L,
  correct = FALSE
)

is_binary(x)

Arguments

x

vector of a binary values, i.e. a logical vector, or numeric with values c(0, 1)

conf.level

(numeric)
a scalar in ⁠(0, 1)⁠ indicating the confidence level. Default is 0.95

correct

(flag)
include the continuity correction. For further information, see for example stats::prop.test().

strata

(factor)
variable with one level per stratum and same length as x.

weights

(numeric or NULL)
weights for each level of the strata. If NULL, they are estimated using the iterative algorithm that minimizes the weighted squared length of the confidence interval.

max.iterations

(count)
maximum number of iterations for the iterative procedure used to find estimates of optimal weights.

Value

Confidence interval of a proportion.

Functions

  • proportion_ci_wald(): Calculates the Wald interval by following the usual textbook definition for a single proportion confidence interval using the normal approximation.

    p^±zα/2p^(1p^)n\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}}

  • proportion_ci_wilson(): Calculates the Wilson interval by calling stats::prop.test(). Also referred to as Wilson score interval.

    p^+zα/222n±zα/2p^(1p^)n+zα/224n21+zα/22n\frac{\hat{p} + \frac{z^2_{\alpha/2}}{2n} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1 - \hat{p})}{n} + \frac{z^2_{\alpha/2}}{4n^2}}}{1 + \frac{z^2_{\alpha/2}}{n}}

  • proportion_ci_clopper_pearson(): Calculates the Clopper-Pearson interval by calling stats::binom.test(). Also referred to as the exact method.

    (kn±zα/2kn(1kn)n+zα/224n2)/(1+zα/22n)\left( \frac{k}{n} \pm z_{\alpha/2} \sqrt{\frac{\frac{k}{n}(1-\frac{k}{n})}{n} + \frac{z^2_{\alpha/2}}{4n^2}} \right) / \left( 1 + \frac{z^2_{\alpha/2}}{n} \right)

  • proportion_ci_agresti_coull(): Calculates the Agresti-Coull interval (created by ⁠Alan Agresti⁠ and ⁠Brent Coull⁠) by (for 95% CI) adding two successes and two failures to the data and then using the Wald formula to construct a CI.

    (p~+zα/22/2n+zα/22±zα/2p~(1p~)n+zα/224n2)\left( \frac{\tilde{p} + z^2_{\alpha/2}/2}{n + z^2_{\alpha/2}} \pm z_{\alpha/2} \sqrt{\frac{\tilde{p}(1 - \tilde{p})}{n} + \frac{z^2_{\alpha/2}}{4n^2}} \right)

  • proportion_ci_jeffreys(): Calculates the Jeffreys interval, an equal-tailed interval based on the non-informative Jeffreys prior for a binomial proportion.

    (Beta(k2+12,nk2+12)α,Beta(k2+12,nk2+12)1α)\left( \text{Beta}\left(\frac{k}{2} + \frac{1}{2}, \frac{n - k}{2} + \frac{1}{2}\right)_\alpha, \text{Beta}\left(\frac{k}{2} + \frac{1}{2}, \frac{n - k}{2} + \frac{1}{2}\right)_{1-\alpha} \right)

  • proportion_ci_strat_wilson(): Calculates the stratified Wilson confidence interval for unequal proportions as described in Xin YA, Su XG. Stratified Wilson and Newcombe confidence intervals for multiple binomial proportions. Statistics in Biopharmaceutical Research. 2010;2(3).

    p^j+zα/222nj±zα/2p^j(1p^j)nj+zα/224nj21+zα/22nj\frac{\hat{p}_j + \frac{z^2_{\alpha/2}}{2n_j} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}_j(1 - \hat{p}_j)}{n_j} + \frac{z^2_{\alpha/2}}{4n_j^2}}}{1 + \frac{z^2_{\alpha/2}}{n_j}}

  • is_binary(): Helper to determine if vector is binary (logical or 0/1)

Examples

x <- c(
  TRUE, TRUE, TRUE, TRUE, TRUE,
  FALSE, FALSE, FALSE, FALSE, FALSE
)

proportion_ci_wald(x, conf.level = 0.9)
proportion_ci_wilson(x, correct = TRUE)
proportion_ci_clopper_pearson(x)
proportion_ci_agresti_coull(x)
proportion_ci_jeffreys(x)

# Stratified Wilson confidence interval with unequal probabilities

set.seed(1)
rsp <- sample(c(TRUE, FALSE), 100, TRUE)
strata_data <- data.frame(
  "f1" = sample(c("a", "b"), 100, TRUE),
  "f2" = sample(c("x", "y", "z"), 100, TRUE),
  stringsAsFactors = TRUE
)
strata <- interaction(strata_data)
n_strata <- ncol(table(rsp, strata)) # Number of strata

proportion_ci_strat_wilson(
  x = rsp, strata = strata,
  conf.level = 0.90
)

# Not automatic setting of weights
proportion_ci_strat_wilson(
  x = rsp, strata = strata,
  weights = rep(1 / n_strata, n_strata),
  conf.level = 0.90
)