Package: visR 0.4.1

Mark Baillie

visR: Clinical Graphs and Tables Adhering to Graphical Principles

To enable fit-for-purpose, reusable clinical and medical research focused visualizations and tables with sensible defaults and based on graphical principles as described in: "Vandemeulebroecke et al. (2018)" <doi:10.1002/pst.1912>, "Vandemeulebroecke et al. (2019)" <doi:10.1002/psp4.12455>, and "Morris et al. (2019)" <doi:10.1136/bmjopen-2019-030215>.

Authors:Mark Baillie [aut, cre, cph], Diego Saldana [aut], Charlotta Fruechtenicht [aut], Marc Vandemeulebroecke [aut], Thanos Siadimas [aut], Pawel Kawski [aut], Steven Haesendonckx [aut], James Black [aut], Pelagia Alexandra Papadopoulou [aut], Tim Treis [aut], Rebecca Albrecht [aut], Ardalan Mirshani [ctb], Daniel D. Sjoberg [aut]

visR_0.4.1.tar.gz
visR_0.4.1.zip(r-4.5)visR_0.4.1.zip(r-4.4)visR_0.4.1.zip(r-4.3)
visR_0.4.1.tgz(r-4.4-any)visR_0.4.1.tgz(r-4.3-any)
visR_0.4.1.tar.gz(r-4.5-noble)visR_0.4.1.tar.gz(r-4.4-noble)
visR_0.4.1.tgz(r-4.4-emscripten)visR_0.4.1.tgz(r-4.3-emscripten)
visR.pdf |visR.html
visR/json (API)
NEWS

# Install 'visR' in R:
install.packages('visR', repos = c('https://ddsjoberg.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/openpharma/visr/issues

Datasets:
  • adtte - Adtte - CDISC ADaM compliant time to event data set
  • brca_cohort - Cancer survival data

On CRAN:

8.46 score 179 stars 100 scripts 119 downloads 31 exports 91 dependencies

Last updated 8 months agofrom:83198e4127 (on v0.4.1). Checks:OK: 3 ERROR: 4. Indexed: no.

TargetResultDate
Doc / VignettesOKNov 10 2024
R-4.5-winERRORNov 10 2024
R-4.5-linuxERRORNov 10 2024
R-4.4-winERRORNov 10 2024
R-4.4-macERRORNov 10 2024
R-4.3-winOKNov 10 2024
R-4.3-macOKNov 10 2024

Exports:%>%add_annotationadd_CIadd_CNSRadd_highlightadd_quantilesadd_risktablealign_plotsapply_attritionapply_themedefine_themeestimate_cumincestimate_KMget_attritionget_COX_HRget_pvalueget_quantileget_risktableget_summaryget_tableonerenderstat_stepribbonStatStepribbonsummarize_longsummarize_shortSurvSurv_CNSRtableonethe_lhstidymevisr

Dependencies:backportsbase64encbigDbitopsbroombslibcachemcardsclicmprskcolorspacecommonmarkcowplotcpp11crosstalkcurldigestdplyrDTevaluatefansifarverfastmapfontawesomeforcatsfsgenericsggplot2gluegridExtragtgtablegtsummaryhardhathighrhtmltoolshtmlwidgetshttpuvisobandjquerylibjsonlitejuicyjuicekableExtraknitrlabelinglaterlatticelazyevallifecyclemagrittrmarkdownMASSMatrixmemoisemgcvmimemunsellnlmepillarpkgconfigpromisespurrrR6rappdirsRColorBrewerRcppreactablereactRrlangrmarkdownrstudioapisassscalesstringistringrsurvivalsvglitesystemfontstibbletidycmprsktidyrtidyselecttinytexutf8V8vctrsviridisLitewithrxfunxml2yaml

Creating consort flow diagram with visR

Rendered fromConsort_flow_diagram.Rmdusingknitr::rmarkdownon Nov 10 2024.

Last update: 2022-06-22
Started: 2021-06-02

Styling survival plots

Rendered fromStyling_KM_plots.Rmdusingknitr::rmarkdownon Nov 10 2024.

Last update: 2022-06-22
Started: 2021-06-02

Survival Analysis with visR

Rendered fromTime_to_event_analysis.Rmdusingknitr::rmarkdownon Nov 10 2024.

Last update: 2022-06-22
Started: 2021-03-18

Survival Analysis with visR using CDISC ADaM Time-To-Event Analysis Dataset (ADTTE)

Rendered fromCDISC_ADaM.Rmdusingknitr::rmarkdownon Nov 10 2024.

Last update: 2022-06-22
Started: 2021-03-24

Readme and manuals

Help Manual

Help pageTopics
Add annotations to a visR objectadd_annotation
Add confidence interval (CI) to visR objectadd_CI add_CI.ggsurvfit add_CI.ggtidycuminc
Add censoring symbols to a visR objectadd_CNSR add_CNSR.ggsurvfit add_CNSR.ggtidycuminc
Highlight a specific strataadd_highlight add_highlight.ggsurvfit
Add quantile indicators to visR plotadd_quantiles add_quantiles.ggsurvfit
Add risk tables to visR plots through an S3 methodadd_risktable add_risktable.ggsurvfit add_risktable.ggtidycuminc
adtte - CDISC ADaM compliant time to event data setadtte
Align multiple ggplot graphs, taking into account the legendalign_plots
Apply list of inclusion/exclusion criteria to a patient-level dataframeapply_attrition
Applies a theme to a ggplot object.apply_theme
Cancer survival databrca_cohort
Provides a simple wrapper for themesdefine_theme
Competing Events Cumulative Incidenceestimate_cuminc
Wrapper for Kaplan-Meier Time-to-Event analysisestimate_KM
Generate cohort attrition tableget_attrition
Summarize Hazard Ratio from a survival object using S3 methodget_COX_HR get_COX_HR.survfit
Summarize the test for equality across strata from a survival object using S3 methodget_pvalue
Wrapper around quantile methodsget_quantile get_quantile.survfit
Obtain risk tables for tables and plotsget_risktable get_risktable.survfit get_risktable.tidycuminc
Summarize the descriptive statistics across strata from a survival object using S3 methodget_summary get_summary.survfit
Calculate summary statisticsget_tableone get_tableone.default
Translates options for legend into a list that can be passed to ggplot2legendopts
Render a data.frame, risktable, or tableone object as a tablerender
Step ribbon statisticStatStepribbon stat_stepribbon
Calculate summary statistics from a vectorsummarize_long summarize_long.default summarize_long.factor summarize_long.integer summarize_long.numeric
Create abbreviated variable summary for table1summarize_short summarize_short.default summarize_short.factor summarize_short.integer summarize_short.numeric
Create a Survival Object from CDISC DataSurv_CNSR
Display a summary Table (i.e. table one)tableone
Find the "lhs" in the pipelinethe_lhs
Extended tidy cleaning of selected objects using S3 methodtidyme tidyme.default tidyme.survfit
Plot a supported S3 objectvisr visr.attrition visr.default visr.survfit visr.tidycuminc